On the existence of (v, k, t) trades

نویسندگان

  • Ebadollah S. Mahmoodian
  • Nasrin Soltankhah
چکیده

A (v, k, t) trade can be used to construct new designs with various support sizes from a given t-design. H.L. Hwang (1986) showed the existence of (v, k, t) trades of volume 2t and the non-existence of trades of volumes less than 2t or of volume 2t + 1. In thIs paper, first we show that there exist (v, k, t) trades of volumes 2t + 2t1 (t ~ 1), 2t + 2t1 + 2t 2 (t ~ 2), 2t + 2t 1 + 2t 2 + 2t 3 (t ~ 3), and 2t+l. Then we prove that, given integers v > k > t ~ 1, there does not exist a (v, k, t) trade of volume s, where 2t < s < 2t + 2t-l.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

متن کامل

On the non-existence of Steiner (v, k, 2) trades with certain volumes

In this note, we prove that there does not exist a Steiner (v, k, 2) trade of volume m, where m is odd, 2k + 3 ~ m ~ 3k 4, and k ~ 7. This completes the spectrum problem for Steiner (v, k, 2) trades.

متن کامل

Possible volumes of t-(v, t+1) Latin trades

The concept of t-(v, k) trades of block designs previously has been studied in detail. See for example A. S. Hedayat (1990) and Billington (2003). Also Latin trades have been studied in detail under various names, see A. D. Keedwell (2004) for a survey. Recently Khanban, Mahdian and Mahmoodian have extended the concept of Latin trades and introduced t-(v, k) Latin trades. Here we study the spec...

متن کامل

The minimum volume of subspace trades

A subspace bitrade of type Tq(t, k, v) is a pair (T0, T1) of two disjoint nonempty collections (trades) of k-dimensional subspaces of a v-dimensional space F v over the finite field of order q such that every t-dimensional subspace of V is covered by the same number of subspaces from T0 and T1. In a previous paper, the minimum cardinality of a subspace Tq(t, t + 1, v) bitrade was establish. We ...

متن کامل

On directed trades

A (v, k, t) directed trade (or simply a (v, k, t)DT) of volume s consists of two disjoint collections Tl and each containing ordered k-tuples of distinct elements of a v-set called blocks, such that the number of blocks containing any t-tuple of V is the same in Tl as in T2 . Our study shows that the volume of a (v, k, t)DT is at least 2Lt/ 2J and that directed trades with minimum volume and mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1992